Using Hidden Markov Model for Stock Day Trade Forecasting

نویسندگان

  • Wen-Chih Tsai
  • An-Pin Chen
چکیده

Around the world, the Hidden Markov Models (HMM) are the most popular methods in the machine learning and statistics for modeling sequences, especially in speech recognition domain. According to the number of patent applications for speech recognition technology form 1988 to 1998, the trend shows that this method has become very mature. In this thesis, we will make a new use of the HMM and apply it on day trading stock forecast. However, the HMM is based on probability and statistics theory. In a statistics framework, the HMM is a composition of two stochastic processes, a Hidden Markov chain, which accounts for temporal variability, and an observable process, which accounts for spectral variability. The combination contains uncertainly status just likes the stock walk trace. Therefore, the HMM and the stock walk trace have the same idea by coincidence. In this thesis, we will try to learn the stock syntax; just like how the HMM model was used in speech recognition in different languages, and the take the next step ahead in price prediction. Additionally, the stock market is the reflection of the economy. The stock trace is impacted by many factors such as policy, psychology, microeconomics, economics, and capital, etc. There, in this thesis, the TAIFEX Taiwan index futures (TX) and day trade are used to avoid all the uncertainty factors. After the all experiments, it is proven that the HMM is better than the benchmark methodRandom Walk method and the Investment Trust & Consulting Association methodModified Trading method. Moreover, the result is very conspicuous by the statistics testing of significance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model

The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging.  Weather radars are capable of detecting and displaying storm-related ...

متن کامل

A Multi-Factor HMM-based Forecasting Model for Fuzzy Time Series

In our daily life, people are often using forecasting techniques to predict weather, stock, economy and even some important Key Performance Indicator (KPI), and so forth. Therefore, forecasting methods have recently received increasing attention. In the last years, many researchers used fuzzy time series methods for forecasting because of their capability of dealing with vague data. The followe...

متن کامل

Study on Forecasting the Stock Market Trend Based on Stochastic Analysis Method

To counter strong features of disorder and randomness of stock market fluctuation in China, we introduce a Markov process model for the stock market trend forecasting, which is a useful complement for an existing technical analysis. Meanwhile, we expound on the related properties of Markov process and establish Markov chain mathematical model of the stock market trend forecasting, furthermore, ...

متن کامل

Stock Market Forecasting Techniques: a Survey

This paper surveys recent literature in the area of Neural Network, Data Mining, Hidden Markov Model and Neuro-Fuzzy system used to predict the stock market fluctuation. Neural Networks and Neuro-Fuzzy systems are identified to be the leading machine learning techniques in stock market index prediction area. The Traditional techniques are not cover all the possible relation of the stock price f...

متن کامل

Stock Forecasting using Hidden Markov Processes

We define these region of time as a regime whose mean and variance are explicitly different from other region of time. This regime can represent economic situation. If we can figure out this regime, in other words, current economic situation, we can forecast better than using constant mean and variance. In this project, we would like to construct this regime and utilize it for the stock forecas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002